DSpace - Tor Vergata >
Facoltà di Economia >
Tesi di dottorato in economia >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2108/841

Full metadata record

DC FieldValueLanguage
contributor.advisorLicoccia, Silvia-
contributor.advisorTraversa, Enrico-
contributor.authorFabbri, Emiliana-
date.accessioned2009-03-26T16:09:40Z-
date.available2009-03-26T16:09:40Z-
date.issued2009-03-26T16:09:40Z-
identifier.urihttp://hdl.handle.net/2108/841-
description21. cicloen
description.abstractEsistono attualmente varie ragioni per cui ampio interesse scientifico e tecnologico è rivolto verso sistemi di generazione di energia alternativi rispetto ai metodi convenzionali (quali i sistemi a turbine o i motori a combustione interna). Dal punto di vista ecologico, cresce il bisogno di ridurre la produzione di sostanze inquinanti per far fronte a uno sviluppo sostenibile. Da un punto di vista socio-economico, invece, aumenta il bisogno di far fronte a un continuo aumento della richiesta di energia, mentre nello stesso tempo le principali fonti di energia, quali i combustibili fossili, si stanno esaurendo. E infine, da un punto di vista socio-politico, la scarsità delle attuali fonti di energia sta creando drammatiche tensioni tra le varie aree economiche del mondo. La diminuzione della dipendenza mondiale dai combustibili fossili e l’introduzione di forme di generazione di energia alternative potrebbero sanare tale situazione. Il concetto di energia alternativa è stato introdotto già da vari anni. Ci sono diverse fonti d energia alternativa, come l’energia solare, l’energia eolica o la fusione nucleare. Un diverso approccio consiste nello sviluppo di sistemi di generazione di energia alternativi, che siano in grado di lavorare con alti rendimenti e di limitare al massimo la produzione di inquinanti. Allo stato attuale i motori a combustione interna presentano un’efficienza totale del 20-30%. Questo significa che solo il 20-30% dell’energia termica contenuta nel gasolio viene utilizzata come lavoro meccanico. Alti rendimenti si traducono, invece, in costi ridotti per unità di lavoro prodotto. Le celle a combustibile sono sistemi di conversione di energia alternativi i quali permettono la conversione diretta dell’energia chimica dei reagenti in energia elettrica, producendo al contempo basse emissioni inquinanti. Tra i diversi tipi di celle a combustibile, le celle a ossidi solidi (SOFCs) presentano vari vantaggi; tra i primi, lavorando ad alta temperatura (800-100°C) queste celle raggiungono valori di rendimento molto alti, permettono l’uso di diversi combustibili e l’unica emissione inquinante rilevante è quella di CO2, la quale rimane comunque un terzo di quella emessa da un motore a combustione interna a parità di kW/h prodotti. Tuttavia le alte temperature di lavoro comportano anche degli svantaggi: materiali costosi, elevati stress termici, difficoltà nel sigillare la cella, lunghi tempi di accensione e spegnimento del sistema. Per risolvere questi problemi la ricerca è orientata nell’abbassare la temperatura di funzionamento delle SOFCs nel cosiddetto range di temperature intermedie (400-700°C). Abbassare la temperatura di funzionamento si traduce in un peggioramento delle performance dei vari componenti della cella, e per questo lo studio di nuovi materiali risulta essenziale nella prospettiva di rendere le SOFC commercializzabili. Lo scopo di tale lavoro di tesi è appunto lo studio di materiali elettrolitici ed elettrodici che presentino buone proprietà conduttive a temperature di funzionamento intermedie e che allo stesso tempo siano chimicamente stabili. Nel capitolo 1A della tesi si presentano i principi basilari di funzionamento di una SOFC e una breve illustrazione dei materiali più studiati in letteratura sia per le alte e intermedie temperature di funzionamento. In particolare, tra i materiali ceramici con buone proprietà conduttive a basse temperature si trovano i conduttori protonici. Nel Capitolo 2A vengono illustrate le principali proprietà chimico-fisiche ed elettrochimiche di tali materiali ceramici. Molti ossidi perovskitici presentano conduzione protonica a temperature intermedie quando esposti ad atmosfera di idrogeno e/o vapore acqueo. Tuttavia nessuno di questi ossidi presenta contemporaneamente le due proprietà essenziali richieste ad un buon elettrolita: alta conducibilità ionica e buona stabilità chimica. La seconda parte della tesi presenta i risultati del lavoro sperimentale svolto, il quale è stato rivolto alla preparazione e caratterizzazione di conduttori protonici ceramici elettrolitici con alta conducibilità e buona stabilità chimica e allo sviluppo di elettrodi a - hoc per tali elettroliti. Il Capitolo 1B riporta l’ottimizzazione di una tecnica di sintesi sol gel per produrre i seguenti conduttori protonici: BaZr0.8Y0.2O3-δ (BZY) e BaCe0.8Y0.2O3-δ (BCY). Attraverso il metodo di sintesi ottimizzato si sono sintetizzate fasi singole dei suddetti composti. Le basse temperature di calcinazione richieste dal processo hanno portato a polveri di particelle nanometriche. I due composti sono stati sinterizzati in forma di pasticche circolari e caratterizzati elettricamente mediante spettroscopia di impedenza. Inoltre sono stati svolti test termici in flusso di anidride carbonica per valutare la stabilità chimica dei due composti, osservando una buona stabilità solo nel caso del BZY. Tuttavia le performance in cella di tale elettrolita si sono rilevate insufficienti rispetto ai target richiesti per la commercializzazione. Nel Capitolo 2B si è cercato di implementare le prestazioni del BZY sostituendo nel sito B della struttura perovskitica diverse quantità di Ce. Gli elettroliti cosi prodotti sono stati analizzati ai raggi X, sotto il punto di vista della stabilità chimica e della conducibilità elettrica. Il miglior compromesso tra stabilità chimica e conducibilità elettrica è risultato il composto con stechiometria BaZr0.5Ce0.3Y0.2O3-δ. Un ulteriore miglioramento della conduzione elettrica rispetto al BaZr0.5Ce0.3Y0.2O3-δ, pur mantenendo un’ottima stabilità chimica, è stato ottenuto realizzando un elettrolita “a doppio strato”, il quale è descritto nel Capitolo 3B. Una pasticca spessa 1 mm di BCY è stata protetta con uno strato sottile (circa un micron) di BZY cresciuto tramite la tecnica di deposizione a laser pulsato. Questo nuovo elettrolita ha presentato elevata conducibilità e buone prestazioni in cella in termini di stabilità chimica e densità potenza fornita. Nel Capitolo 4B si sono invece investigati elettrodi funzionali per tali elettroliti a conduzione protonica. Un catodo composito e stato realizzato unendo un conduttore misto ionico/elettronico, La1-xSrxCo1-yFeyO3-δ (LSCF), e un conduttore misto protonico/elettronico BaCe0.9Yb0.1O3-δ (10YbBC). L’uso di catodi compositi aumenta i siti di reazione al catodo, diminuendo quindi le cadute di potenziale dovute alle reazioni catodiche.en
description.abstractThere are increasing reasons to explore alternatives to conventional energy generation methods (that is to say coal-fired steam turbine and gasoline internal combustion engine). From an ecological point of view, there is the need to reduce the polluting by-products of conventional energy generation. From a socio-economical standpoint, the worldwide demand for energy continues to rise as more and more nations join the group of the industrialized countries, while hydrocarbon fuels go to exhaustion. Finally, from a socio-political perspective, the situation described above has created several and often dramatic tensions between different world economic areas, as evidenced by frequent wars. Lowering the global dependence on oil might reduce such tensions. However, despite all of this, changes in the energy generation methods are extremely slow, as evidenced by the wide (if we cannot say total) use of the internal combustion engine. The concept of alternative energy has been introduced a long time ago. Several different sources of energy are proposed, which can have the potential to replace conventional generation methods. Popular examples include solar radiation, wind motion, and nuclear fusion. Each of these technologies has its own set of problems that have slowed down its commercialization, but much research is being conducted to overcome these problems. In fact, the research towards the development of alternative, highly efficient, eco-friendly energy production technologies is expanding. There is a general push towards higher efficiencies. At present, automobiles based on internal combustion engines have an overall efficiency of about 20-30%. That is, only 20-30% of the thermal energy content of the gasoline is converted into useful mechanical work and the rest is wasted. Higher efficiencies translate into reduced energy costs per unit of work done. Fuel cells, an alternative energy technology, have received growing interest in recent years since they represent one of the most promising energy production systems to reduce pollutant emissions. They are electrochemical devices that allow the direct conversion of chemical energy into electrical energy. Among the different type of fuel cells, solid oxide fuel cells (SOFCs) offer great promise as a clean and efficient technology for energy generation and provide significant environmental benefits. They produce negligible hydrocarbons, CO or NOx emissions, and, as a result of their high efficiency, about one-third less CO2 per kW/h than internal combustion engines. Unfortunately, the current SOFC technology based on a stabilized zirconia electrolyte requires the cell to operate from 700 to 1000°C to avoid unacceptable ohmic losses. These high operating temperatures demand specialized (expensive) materials for fuel cell interconnectors, long start-up time, and large energy input to heat the cell up to the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at intermediate temperatures (IT, 400-700°C), tremendous benefits may result. In particular, in the IT range ferrite steel interconnects can be used instead of expensive and brittle ceramic materials. In addition, sealing becomes easier and more reliable; rapid start-up is possible; thermal stresses (namely, those caused by thermal expansion mismatches) are reduced; electrode sintering becomes negligible. Combined together, all these improvements result in reduced initial and operating costs. Therefore, the major trend in the present research activities on SOFCs is the reduction of the operating temperature. The problem is that lowering the operating temperatures lowers the electrolyte conductivity, whereas the electrode polarization greatly increases, reducing the overall fuel cell performance. Considering the described scenario, it is clear how the study of materials assumes a considerable role in lowering SOFC operating temperature. Making SOFCs commercially competitive with conventional energy generation methods means developing a highly efficient and environmental friendly energy production device to provide for a global sustainable energy system. IT-SOFCs represent not only a laboratory research activity, but a great challenge for the entire society. The purpose of the present dissertation is the development of a stable highly-conductive electrolyte and performing electrodes for lower temperature SOFCs. Chapter 1A presents the physico-chemical principles of SOFCs functioning, the demands imposed on the components materials, together with a literature survey on the state of-the art technology. Starting from more “conventional” oxygen ion conducting electrolytes, the need for reducing the operation temperature leads to a discussion on the properties of proton conducting materials as a feasible alternative to reach the goal of fabricating an IT-SOFCs. Chapter 2A describes the main properties of ceramic proton conductors. Several perovskite-type oxides, such as doped BaCeO3, SrCeO3, BaZrO3, and SrZrO3, show proton conductivity in the IT range when exposed to hydrogen and/or water vapour containing atmospheres. They are generally known as high temperature proton conductors (HTPCs). The main challenge in the field of HTPC is to find a compound that concurrently satisfies two of the essential requirements for fuel cell application, namely high proton conductivity and good chemical stability under fuel cell operating conditions. The second part of this dissertation describes the experimental results achieved during the research carried out. In view of the considerations given in Chapter 2a, Chapter 1B describes the optimization of the sol-gel procedure to prepare BaZr0.8Y0.2O3-δ (BZY) proton conductor electrolyte. Producing BZY powders with controlled compositional homogeneity and microstructure using a proper synthesis method could improve the electrochemical performance of this electrolyte. The optimized sol–gel procedure allowed the reduction of the diffusion path up to a nanometric scale, and thus required lower calcination temperatures. Nanocrystalline single-phase powders of BZY were produced at temperatures as low as 1100 °C. The same sol-gel procedure was also used to synthesize BaCe0.8Y0.2O3-δ (BCY) proton conductor electrolyte achieving also in this case nanometric particles powder at the calcination temperature of 100°C. The performance of the synthesized BZY and BCY proton conductors were examined in terms of chemical stability. After exposure to CO2 at high temperatures, the synthesized BZY powders presented good chemical and microstructural stability, differently from BCY which strongly decomposed after the CO2 treatment. Electrical conductivity and fuel cell performance were investigated only for the stable BZY electrolyte, however without achieving the required performance for practical application. Chapter 2 presents the application of the optimized synthetic procedure to the preparation of different proton conductor electrolytes. To further improve the electrochemical performance of barium zirconate electrolyte, the B-site of the BZY perovskite structure was doped with Ce producing several BaZr0.8-xCexY0.2O3-δ compounds (0.0≤x≤0.8). The prepared samples were analyzed in terms of chemical stability in CO2 environment, electrical conductivity, microstructural characteristics, and finally under fuel cell tests. Among the tested electrolytes, the BaZr0.5Ce0.3Y0.2O3-δ composition represented the best compromise between electrical performance and chemical stability. In fact it was able to maintain almost the same chemical stability of BZY, but with improved, more than twice, fuel cell performance. Chapter 3 describes a further improvement of the HTPC electrolyte performance. To obtain a highly conductive and chemically stable proton conductor electrolyte, a sintered Y-doped barium cerate (BCY) pellet was protected with a thin BZY layer, grown by pulsed laser deposition. The overall performance of the bilayer electrolyte turned out to be of great interest for practical use in IT-SOFCs application. The promising performance of this bilayer electrolyte rose from the very good crystallographic matching at the interface between the two materials, as well as the microstructure properties of the protecting layer in terms of uniformity, density and filling factor. However, while the bilayer conductivity was only slightly smaller than the conductivity of the BCY pellet, the measured fuel cell performances were negatively affected by the interface of the Pt electrodes with the BZY layer. For this reason the development of a superior cathode is crucial to make IT-SOFCs based on proton conductors competitive with the more established SOFCs using oxygen-ion conductor electrolytes. Chapter 4 focuses on the optimization of composite cathodes for application in IT-SOFC based on HTCP electrolytes. To explore different cathode materials with respect to the most commonly used for proton conductor electrolytes, such as platinum or cobalto-ferrites, the area specific resistance (ASR) of composite cathodes was investigated. Firstly, BaCe0.9Yb0.1O3-δ (10YbBC) and SrCe0.9Yb0.1O3-δ (10YbSC) were tested as cathode materials since they show mixed protonic-electronic conductivity. However, the ASR of the interface of these cathode materials with Y-doped barium cerate proton conductor electrolyte was extremely large, probably because of their too low partial electronic conductivity. For this reason, La1-xSrxCo1-yFeyO3-δ (LSCF), which presents high electronic conductivity, was combined with 10YbSC or 10YbBC to form composite cathodes. LSCF was chosen also because it allows faster oxygen surface exchange being a mixed O2-/e- conductor. The lowest ASR values were achieved with the composite cathode made of LSCF and 10YbBC in a1:1 ratio. Single phase Pt and LSCF cathodes were tested and it was found that they showed higher interfacial resistance than LSCF/10YbBC(1:1) composite cathode. This finding clearly suggests the importance of the proton conductor phase within the electrode, which actually should increase the triple phase boundary (TPB) density and so improve the cathode performance. The good performance observed for LSCF/10YbBC(1:1) composite cathode make it a cheaper and more efficient alternative to the Pt cathode that can actually improve the performance of IT-SOFCs based on proton conductor electrolytes.en
format.extent5745038 bytes-
format.mimetypeapplication/pdf-
language.isoenen
subject.classificationING-IND/22 Scienza e tecnologia dei materialien
titleTailoring materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) based on ceramic proton conducting electrolyteen
title.alternativeStudio di materiali per applicazione in celle a combustibile ad ossidi solidi a temperature intermedie basati su ceramici a conduzione protonicaen
typeDoctoral thesisen
degree.nameDottorato in materiali per l'ambiente e l'energiaen
degree.levelDottoratoen
degree.disciplineFacoltà di ingegneriaen
degree.grantorUniversità degli studi di Roma Tor Vergataen
date.dateofdefenseA.A. 2008/2009en
Appears in Collections:Tesi di dottorato in economia

Files in This Item:

File Description SizeFormat
Thesis Fabbri_ after revision.pdf5610KbAdobe PDFView/Open

Show simple item record

All items in DSpace are protected by copyright, with all rights reserved.