DSpace - Tor Vergata >
Facoltà di Medicina e Chirurgia >
Tesi di dottorato in medicina >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2108/48

Full metadata record

DC FieldValueLanguage
contributor.advisorAvigliano, Luciana-
contributor.authorDuranti, Guglielmo-
date.accessioned2005-10-06T14:40:07Z-
date.available2005-10-06T14:40:07Z-
date.issued2005-10-06T14:40:07Z-
identifier.urihttp://hdl.handle.net/2108/48-
description16 Cicloen
description.abstractDurante l’esercizio fisico le cellule muscolari sono continuamente esposte allo stress ossidativo e necessitano quindi di efficaci sistemi di difesa antiossidante. Tramite l’attivazione di fattori trascrizionali, quali AP-1 e NF-kB, le cellule muscolari possono compensare le variazioni ambientali incrementando le risposte adattative (antiossidanti endogeni, enzimatici e non). Alle difese cellulari contribuiscono anche gli antiossidanti esogeni, quali la vitamina C. Il contenuto di vitamina C nelle cellule muscolari è determinato sia dall’efficienza dei sistemi di trasporto sia dal mantenimento della vitamina nella sua forma ridotta. Lo scopo della tesi è stato quello di studiare in cellule muscolari scheletriche: i) specifici sistemi antiossidanti, quali il glutatione, la tioredossina reduttasi ed enzimi antiossidanti; ii) il ruolo di fattori di trascrizione sensibili allo stato redox quali AP-1 e NF-kB; iii) i meccanismi di trasporto sia per la forma ridotta (acido ascorbico, AA) che per la forma ossidata (acido deidroascorbico, DHA) della vitamina C; iiii) i sistemi enzimatici (NADH-, NADPH-, GSH-, acido lipoico-dipendenti) coinvolti nella rigenerazione della vitamina C. A tal fine sono state utilizzate cellule muscolari scheletriche di topo (C2C12) e di ratto (L6C5), sia in fase proliferativa che dopo differenziamento. I risultati ottenuti dimostrano che il differenziamento è correlato all'aumento della capacità antiossidante, e tale fenomeno è maggiormente evidente nelle cellule L6C5. Le cellule C2C12 (mioblasti e miotubi), possedendo elevati livelli di NF-kB, di complessi AP-1 di tipo inibitorio e di tioredossina reduttasi, mostrano una maggiore espressione di enzimi antiossidanti; perciò, tali cellule sono maggiormente resistenti allo stress ossidativo. Al contrario, i mioblasti L6C5 mostrano un fenotipo sensibile, correlato a bassi livelli di tioredossina reduttasi, catalasi ed attività di NF-kB, ed alti livelli di glutatione ossidato e di complessi AP-1 attivi. Tuttavia, questa linea cellulare, se indotta a differenziare, acquista un fenotipo resistente all’apoptosi, accompagnato da drastici cambiamenti nel bilancio fra specie ossidanti ed antiossidanti. I miotubi L6C5, infatti, aumentano le attività di catalasi e NF-kB, e cambiano i complessi AP-1 da attivanti ad inibitori. Gli esperimenti condotti per caratterizzare il metabolismo della vitamina C hanno evidenziato che il trasporto dell'AA è mediato dall'SVCT2 (trasportatore con elevata affinità), mentre il trasporto per il DHA è mediato dai trasportatori del glucosio GLUT1 e GLUT3. I mioblasti L6C5 sono più efficienti nel trasporto dell'acido ascorbico, mentre le cellule C2C12 sono più efficienti nel trasporto dell'acido deidroascorbico e mostrano maggiori attività DHA e AFR (radicale ascorbile) reduttasiche. Lo stress ossidativo, indotto dalla deplezione di glutatione, induce un aumento dell'espressione di SVCT2 e dell'attività DHA reduttasica tioredossina-dipendente, specialmente nelle cellule differenziate. Da questi dati appare evidente che il trasportatore SVCT2 e l'attività DHA reduttasica NADPH-tioredossina-dipendente appartengono ad un sistema inducibile attivato in risposta allo stress ossidativo.en
description.abstractDuring physical exercise skeletal muscle cells are continuosly exposed to oxidative stress. Thus, they compensate environmental challenges by increasing adaptive responses, characterized by AP-1- and NF-kB-mediated transcriptional up-regulation of endogenous enzymatic and non-enzymatic antioxidants. Also exogenous antioxidants, such as vitamin C contribute to cellular defences. The skeletal muscle cells content of vitamin C is determined both by the efficiency of transport systems and by the ability to maintain the vitamin in its reduced form. Aim of this thesis was to study, in skeletal muscle cells: i) specific antioxidants systems, including glutathione (GSH), thioredoxin reductase (TxR) and antioxidants enzymes; ii) the role of redox sensitive transcription factors, such as AP-1 and NF-kB; iii) the transport of vitamin C, both in the reduced (ascorbic acid, AA) and oxidized form (dehydroascorbic acid, DHA); iiii) the enzymatic systems (NADH-, NADPH-, GSH-, lipoic acid-dependent) involved in vitamin C recycling. To this end, two skeletal muscle cell lines were used (mouse C2C12 and rat L6C5 cells), in both proliferating and differentiated conditions. We found that muscle cell differentiation was associated with increase in antioxidant ability, and this phenomenon was more evident in the L6C5 cell line. C2C12 myoblasts and myotubes show high levels of NF-kB and thioredoxin reductase, together with AP-1 inhibitory complexes. Furthermore, C2C12 cells have antioxidant enzymes highly active thus allowing survival after exposure to oxidative insults. On the contrary, L6C5 myoblasts show a sensitive phenotype, correlated to low levels of thioredoxin reductase, catalase and NF-kB activity, together with high levels of oxidized glutathione (GSSG) and activating AP-1 complexes. Interestingly, this cell line acquires an apoptosis-resistant phenotype, accompanied by drastic changes in the oxidant/antioxidant balance, when induced to differentiate. Indeed, L6C5 myotubes enhance catalase and NF-kB activities and shift AP-1 complexes from an activating to an inhibitory behaviour. Concerning the experiments on vitamin C metabolism, our data show that both cell lines import AA by the SVCT2 transporter, while DHA transport is mediated by glucose carriers GLUT1 and GLUT3. L6C5 myoblasts are more efficient in ascorbic acid transport, while C2C12 cells are more efficient in dehydroascorbic acid transport and ascorbyl free radical/dehydroascorbic acid reduction. Oxidative stress, induced by glutathione depletion, increased SVCT2 expression and thioredoxin reductase-mediated dehydroascorbic acid reduction, especially in differentiated cells. From these data, SVCT2 and NADPH-thioredoxin dependent DHA reduction appear to belong to an inducible system activated in response to oxidative injury.en
format.extent1426628 bytes-
format.mimetypeapplication/pdf-
language.isoen
subjectascorbic acid-
subjectascorbic acid-2 phosphate-
subjectascorbyl free radical-
subjectantioxidative enzyme-
subjectactivating protein 1-
subjectbuthionine sulfoximine-
subject5(and-6)chloromethyl-2',7'-dichlorodihydro--
subjectfluorescein diacetate, acetyl ester-
subjectdehydroascorbic acid-
subjectdeoxyglucose-
subjectdithiotreitol-
subjectglutathione peroxidase-
subjectreduced glutathione-
subjectoxidized glutathione-
subjectnuclear factor-kB-
subjectphosphate buffered saline-
subjectreactive oxygen species-
subjectreactive oxygen and nitrogen species-
subjectsuperoxide dismutase-
subjectthioredoxin-
subjectthioredoxin reductase-
subject.classificationBIO/10; Biochimicaen
titleOxidative stress resistance in skeletal muscle cells: role of vitamin C and redox sensitive transcription factors NF-KB and AP-1en
typeThesisen
degree.nameDottorato in biochimica e biologia molecolareen
degree.levelDottoratoen
degree.disciplineFacoltà di medicina e chirurgiaen
degree.grantorUniversità degli studi di Roma Tor Vergataen
date.dateofdefense2004/2005en
Appears in Collections:Tesi di dottorato in medicina

Files in This Item:

File Description SizeFormat
Ciclo XVI BBM DURANTI.pdf1393KbAdobe PDFView/Open

Show simple item record

All items in DSpace are protected by copyright, with all rights reserved.