DSpace - Tor Vergata >
Facoltà di Economia >
Centro Vito Volterra >
Research articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2108/368

Full metadata record

DC FieldValueLanguage
contributor.authorAccardi, Luigi-
contributor.authorBoukas, Andreas-
date.accessioned2007-10-03T10:46:38Z-
date.available2007-10-03T10:46:38Z-
date.issued2007-06-
identifier.urihttp://arxiv.org/abs/0706.3397-
identifier.urihttp://hdl.handle.net/2108/368-
description.abstractThe identification of the ∗–Lie algebra of the renormalized higher powers of white noise (RHPWN) and the analytic continuation of the second quantized Virasoro–Zamolodchikov–w1 ∗–Lie algebra of conformal field theory and high-energy physics, was recently established in [3] based on results obtained in [1] and [2]. In the present paper we show how the RHPWN Fock kernels must be truncated in order to be positive definite and we obtain a Fock representation of the two algebras. We show that the truncated renormalized higher powers of white noise (TRHPWN) Fock spaces of order ≥ 2 host the continuous binomial and beta processes.en
format.extent241450 bytes-
format.mimetypeapplication/pdf-
language.isoenen
subjectrenormalized powers of white noiseen
subjectsecond quantizationen
subjectw1-algebraen
subjectVirasoro algebraen
subjectZamolodchikov algebraen
subjectFock spaceen
subjectmoment systemsen
subjectcontinuous binomial distributionen
titleFock representation of the renormalized higher powers of white noise and the Virasoro--Zamolodchikov -w∞ *-Lie algebraen
typeArticleen
subject.ams60H40; White noise theoryen
subject.ams81S05; Commutation relations and statisticsen
subject.ams81T30; String and superstring theories; other extended objects (e.g., branes)en
subject.ams81T40; Two-dimensional field theories, conformal field theories, etc.en
title.releaseversion 2en
Appears in Collections:Research articles

Files in This Item:

File Description SizeFormat
07063397v2.pdf235KbAdobe PDFView/Open

Show simple item record

All items in DSpace are protected by copyright, with all rights reserved.